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Executive Summary 
The Weather Research and Forecasting Model (WRF) is a numerical weather 
prediction model that has been used for many applications, including My Weather 
Impacts Decision Aid (MyWIDA). WRF is maintained by the National Center for 
Atmospheric Research (NCAR), which has developed a suite of Model 
Evaluation Tools (MET) to evaluate the accuracy of WRF forecasts using 
observations of meteorological variables such as temperature, relative humidity, 
and wind. The traditional use of MET calculates model performance over the 
entire model domain.  

For Soldiers in theater, the Army requires high-resolution weather forecasting to 
resolve atmospheric features with wavelengths on the order of 5 kilometers (km) 
or less. This requires models that operate on a model grid spacing of about 1 km 
or less in the finest, or most resolved, domain. To validate such high-resolution 
modeling against observations requires a more focused spatial and temporal 
approach over parts of the domain rather than the domain as a whole. With a 
Geographic Information System (GIS), researchers can now consider terrain 
type/slope, land use effects, and other spatial and temporal variables as 
explanatory metrics in model assessments. GIS techniques, when coupled with 
high-resolution point and gridded observation sets, allow location-based 
approaches that permit discovery of spatial and temporal scales where models do 
not sufficiently resolve the desired phenomena—for example, turbulence effects 
or mountain and lee waves. 

In this technical report, we discuss our initial efforts in using GIS tools to study 
model errors in the Advanced Research WRF (WRF–ARW) with a 1-km 
horizontal grid spacing inner domain centered near San Diego, California. The 
San Diego area contains a mixture of urban, suburban, agricultural, and 
mountainous terrain types along with a rich array of observational data with 
which to illustrate our ability to conduct subdomain verification. We selected 5 
case study days from February and March of 2012 with varied synoptic 
conditions.  

A literature review indicated that elevation is strongly correlated with 
meteorological parameters, at least in a climatic sense; consequently we focused 
this report on elevation as the explanatory variable. We found that elevation 
accounts for a significant portion of the variance in the model error of surface 
temperature and relative humidity predictions. On average, elevation accounts for 
about 10% to 20% of the total variance. In some cases however, elevation 
explained more than 50% of the total variance, while in other cases elevation was 
not a significant explanatory variable at all. Overall we found that elevation 
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accounts for more variance during the afternoon hours and less variance during 
the early morning hours; however, we could not discern a clear diurnal pattern 
within the model errors. 

In this study, we demonstrated the effectiveness of using a GIS to evaluate model 
performance at the subdomain level. A GIS can analyze spatially distributed point 
forecast errors and show the dependence of forecast errors on terrain 
characteristics at the spatial scales of phenomena of interest to Warfighters, such 
as mountain/valley breezes and land/sea breezes. The GIS techniques used in this 
study show considerable promise for demonstrating the relationships of high-
resolution model errors to explanatory variables such as terrain as well as 
identifying subdomains where the spatial statistics are more homogeneous. 
Further analysis using other explanatory variables such as slope, land use, and 
distance from the coastline will be needed to draw firm conclusions about the 
model performance. We achieved our goal with this study, which was to develop 
a GIS analysis method that goes beyond the types of analysis and conclusions 
gained from domain-level, aggregate statistics. 
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1. Background   

Weather has a significant impact on Army personnel, weapons, tactics, and 
operations; therefore, accurate weather forecasts can be a deciding factor in any 
conflict—large or small. A famous example is D-day in World War II when the 
Allied nations invaded Normandy, France. Only a few days each month had the 
timing of high and low tides and full moon conditions suitable for landing 
thousands of men on the beaches of Normandy. On June 4, 1944, high winds and 
heavy seas made a landing impossible; however, James Stagg of the Royal Air 
Force and his team of meteorologists predicted that the weather would improve on 
June 5, and General Eisenhower decided to go ahead with the invasion. The 
German meteorologists were not expecting the weather to break and were thus 
surprised by the invasion (Ross 2014). 

As computing technology has advanced, the weather forecasting task, once the 
primary role of a human forecaster in theater, has shifted to computerized 
Numerical Weather Prediction (NWP) models. Scientists around the world have 
used the Weather Research and Forecasting (WRF) model extensively for many 
applications. In this study, we have used the Advanced Research version of WRF 
(Skamarock et al. 2008) that we abbreviate as WRF–ARW. WRF–ARW includes 
Four Dimensional Data Assimilation (FDDA) techniques that can be used to 
incorporate observations into the model so that forecast quality is improved (Deng 
et al. 2009; Stauffer and Seaman 1994). The US Army Research Laboratory 
(ARL) uses WRF–ARW as the core of its Weather Running Estimate–Nowcast 
(WRE–N) weather forecasting model. 

The Army requires high-resolution weather forecasting to resolve atmospheric 
features with wavelengths on the order of 5 km or less, which imposes a 
requirement for NWP to operate on a model grid spacing on the order of 1 km or 
less in the finest, or most resolved, domain to resolve weather phenomena of 
interest to the Soldier in theater. The atmospheric flows of interest to the Army 
include mountain/valley breezes, sea breezes, and other flows induced by 
differences in land surface characteristics. High-resolution NWP forecasts need to 
be validated against observations before their outputs can be used by applications 
such as My Weather Impacts Decision Aid (MyWIDA) developed by Brandt et al. 
(2013). Weather forecast validation has always been of interest to the civilian and 
military weather forecasting community; see for example the reviews by Ebert et 
al. (2013) and Casati et al. (2008), or the guides by Jolliffe and Stephenson (2011) 
or Wilks (2011). The validation of the models, especially high-resolution NWP, 
has proven to be especially difficult when addressing small temporal and spatial 
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scales (National Research Council 2010) that characterize NWP for use in Army 
applications. 

The WRF model is maintained by the National Center for Atmospheric Research 
(NCAR), which has also developed a suite of Model Evaluation Tools (MET) 
(NCAR 2013) to evaluate WRF–ARW performance. MET Point-Stat performs 
traditional grid-to-point verification, while MET Grid-Stat performs grid-to-grid 
neighborhood verification to account for the uncertainty inherent in high-
resolution forecasting. The MET Method for Object-based Diagnostic Evaluation 
(MODE) has been used to develop techniques for object-based spatial verification 
of high-resolution forecast grids of continuous meteorological variables.  

ARL has employed MET in prior assessments such as that of Raby et al. (2012) 
who evaluated 2 models to arrive at domain level conclusions about the various 
strengths and weaknesses of these models and their accuracies. While MET 
proved useful as an assessment tool for forecasts over a regional domain, they 
found its ability to illuminate model shortcomings on the spatial and temporal 
scales needed by battlefield commanders to be lacking. In another assessment 
Dumais et al. (2012) evaluated 3 models that produced 3-dimensional (3-D) wind 
fields to arrive at domain-level conclusions. Although Dumais et al. did not 
employ any of the MET in their analysis, their desire was to also identify model 
strengths and weaknesses, and again, they found their ability to draw spatial and 
temporal conclusions lacking. 

In other related work, Johnson (2012) conducted a location-based analysis of 
WRF over an inland testing range and for specific model time bins for a single 
day of interest. In his analysis, Johnson categorized the terrain as belonging to 
Valleys, Plains, or Mountains and concluded that this categorization increased 
correlation coefficients for these categories. However, the differences when 
considering horizontal grid resolutions of 1 km versus 3 km were present only in 
the “Valley” and “Mountain” cases. Though differences in 1 km and 3 km were 
present (favoring 1 km improved accuracy), they were minimal. Johnson et al. 
(2014) extends and refines this result. 

Our assertion (Smith et al. 2014a; Smith et al. 2014b; 2015; Smith et al. 2014c; 
Smith et al. 2013) is that high-resolution models require verification on temporal 
and spatial scales appropriate for the phenomena that are being forecast. Our 
principal thesis is that a Geographic Information System (GIS) has tools that 
allow us to divide the domain into more homogenous subdomains according to 
explanatory variables such as terrain and land use. Our ultimate goal is to make 
more accurate inferences about model performance as well as providing a better 
understanding of model strengths and weaknesses. 
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The purpose of this study is to develop GIS tools that can better evaluate model 
performance. Our study domain is located in the San Diego, California region, 
which we chose because of its varied terrain and large number of weather 
observing stations. We chose 5 case study days with varied synoptic conditions 
from February and March of 2012. We used the MET Point-Stat to calculate the 
model forecast value at each of the observing stations and analyzed the matched 
forecast–observation pairs using GIS tools. 

2. Domain and Model 

The ARL WRE–N (Dumais et al. 2013; Dumais et al. 2004) has been designed as 
a convection-allowing application of the WRF–ARW model (Skamarock et al. 
2008) with an observation-nudging FDDA option (Deng et al. 2009; Liu et al. 
2005). For this investigation, we configured WRE–N in a multinest (i.e., 9/3/1 
km) configuration to produce a fine inner mesh with 1-km grid spacing and 
leveraged an external global model for cold-start initial conditions and time-
dependent lateral boundary conditions for the outermost nest. For ARL 
development and testing, this global model has been the National Center for 
Environmental Prediction’s Global Forecast System (GFS) model (Environmental 
Modeling Center 2003). The WRE–N is envisioned to be a rapid-update cycling 
application of WRF–ARW with FDDA and optimally could refresh itself at 
intervals up to hourly (dependent upon the observation network) (Dumais et al. 
2012; Dumais and Reen 2013). 

For this particular experiment, the model was run with a base time of 1200 
coordinated universal time (UTC) and generated output for each hour from 1200 
UTC to 1200 UTC of the following day for a total of 25 model outputs on each of 
5 days in February and March of 2012. The modeling domain is depicted in  
Fig. 1. 
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Fig. 1 Triple-nested model configuration 

Note: The outer domain is dimensioned as 1,566 km by 1,566 km at a grid spacing of 9 km; a 
middle nest domain dimensioned as 720 km by 720 km at a grid spacing of 3 km; and an 
inner domain dimensioned as 126 km by 126 km at a grid spacing of 1 km. Each domain 
center is coincident and the nested configuration is centered near San Diego, California. 

2.1 Observations 

The initial conditions were constructed by starting with the GFS data as the first 
guess for an analysis using observations. Most observations were obtained from 
the Meteorological Assimilation Data Ingest System (MADIS) (National Oceanic 
and Atmospheric Administration [NOAA] 2014a), except for the Tropospheric 
Airborne Meteorological Data Reporting (TAMDAR) (Daniels et al. 2004) 
observations, which were obtained from AirDat (2014). The MADIS database 
included standard surface observations, mesonet surface observations, maritime 
surface observations, wind profiler measurements, rawinsonde soundings, and 
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Aircraft Communications Addressing and Reporting System (ACARS) data. Use 
and reject lists were obtained from developers of the Real-Time Mesoscale 
Analysis system (NOAA 2014b), and these were used to filter MADIS mesonet 
observations. This quality assurance evaluation is especially important given the 
greater tendency of mesonet observations to be poorly sited than other, more 
standard, surface observations.  

The Obsgrid component of WRF was used for quality control of all observations. 
This included gross error checks, comparing observations to a background field 
(here GFS), and comparing observations to nearby observations. We modified 
Obsgrid to allow for single-level observations such as the TAMDAR and ACARS 
data to be more effectively compared against the GFS background field. We 
employed observation nudging to the observations from these same sources from 
12 to 18 UTC, followed by 1-h ramping down of the nudging from 18 to 19 UTC 
during which time no new observations are assimilated. The forecast period thus 
begins at 18 UTC because no observations after this time are assimilated.  

2.2 Parameterizations 

For the parameterization of turbulence in WRE–N, a modified version of the 
Mellor–Yamada–Janjić (MYJ) Planetary Boundary Layer (Janjić 1994) scheme 
was used. This modification decreases the background turbulent kinetic energy 
and alters the diagnosis of the boundary layer depth used for model output and 
data assimilation (Reen et al. 2014). The WRF single-moment, 5-class 
microphysics parameterization is used on all domains (Hong et al. 2004), while 
the Kain-Fritsch (Kain 2004) cumulus parameterization is used only on the 9-km 
outer domain. For radiation, the Rapid Radiative Transfer Model (RRTM) 
parameterization (Mlawer et al. 1997) is used for long wave radiation and the 
Dudhia (1989) scheme for shortwave radiation. The Noah land surface model 
(Chen and Dudhia 2001a; 2001b) is used. Additional references and other details 
for these parameterization schemes are available from Skamarock et al. (2008).  

2.3 Case Study Days 

The case study days were selected on the basis of the prevailing synoptic weather 
conditions over the nested domains, and a short description of these conditions is 
provided in Table 1. 
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Table 1  Synoptic conditions for the case study days considered 

Case Dates (all 2012) Description 

1 February 07–08 Upper-level trough moved onshore, which led to widespread 
precipitation in the region. 

2 February 09–10 Quiescent weather was in place with a 500-hPa ridge centered 
over central California at 12 UTC. 

3 February 16–17 An upper-level low located near the California/Arizona 
border with Mexico at 12 UTC brought precipitation to that 
portion of the domain. This pattern moved south and east over 
the course of the day. 

4 March 01–02 A weak shortwave trough resulted in precipitation in northern 
California at the beginning of the period that spread to 
Nevada, then moved southward and decreased in coverage. 

5 March 05–06 Widespread high-level cloudiness due to weak upper-level 
low pressure but very limited precipitation. 

 

3. Data Preparation using MET and Visual Basic 

We used MET Point-Stat to compute matched pair model values for the location 
of each surface (2 and 10 meter) observation from the MADIS dataset in each 
forecast hour. To select observations closest to the top of the hour, and to 
eliminate multiple observations for each hour, we set the duplicate handling of 
Point-Stat to SINGLE. For our data, we extracted the following fields: site 
identification code, site latitude, site longitude, site elevation, the measured value 
of the meteorological variable, and the interpolated forecast value from the 
matched pair data for each of the 25 forecast lead times. For surface observations, 
MET derives the forecast value corresponding to a given observation by 
horizontal interpolation of the surface diagnostic variable (e.g., 2-m temperature, 
2-m moisture, 10-m winds) from the enclosing grid points. 

MET Point-Stat produces a single matched pair output file for each model output 
hour considered. Although this file is useful for many analyses, it is far easier to 
combine these files into a single organized structure that supports GIS analysis. 
We organized our data using Microsoft Access to compile the matched pair data 
for each forecast hour into a single database, and we used custom Visual Basic for 
Applications scripts to organize the data into a tabular structure that can be easily 
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used for GIS analysis. Generically, this table consists of 4 columns that contain 
site information, a column containing the meteorological variable of interest, and 
then a sequence of columns containing the forecast, observed, and model error 
(modeled–observed) for each of the 25 model output times. 

During our efforts to organize our data, we discovered that several observation 
stations from different locations had the same site identification code. Because the 
differences were as much as a kilometer apart, we eliminated these station 
measurements from our analysis. We further restricted our analysis to the stations 
that reported observations in each of the 25 h of a given case day (12 UTC to 12 
UTC the next day). Our intent in making this restriction was twofold: 1) we could 
make hour-to-hour comparisons using the same base set of data, and 2) any 
remaining stations within a given hour would serve as means to cross-validate our 
analysis. The number of stations considered for each case day is shown in Table 
2, and the locations of these stations are show in Figs. 2a–e, where a–e correspond 
to cases 1–5. 

Table 2 Count of stations that were used in each case study day, for measurements made 2 
meters and 10 meters above ground level (AGL) 

 Altitude (AGL) 
Case 2 meters 10 meters 

1  135  72 
2  96  48 
3  122  58 
4  133  80 
5  69  47 

 
The MADIS parameters available at 2 meters AGL include temperature, dew 
point, and relative humidity. The available 10-meter AGL parameters include the 
“u” and “v” components of the wind, as well as the magnitude and direction of the 
wind speed. For this study, we focused our attention on the 2-meter observations 
of relative humidity and temperature. We will consider the other surface 
parameters—such as dew point and wind—in subsequent studies. 
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Fig. 2a The location of the weather stations that contain data for all 25 h of case day 1 
overlaid on terrain data created from a US Geological Survey (USGS) digital elevation 
model with a resolution of 1/3 arc-second 
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Fig. 2b The location of the weather stations that contain data for all 25 h of case day 2 
overlaid on terrain data created from a USGS digital elevation model with a resolution of  
1/3 arc-second 
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Fig. 2c The location of the weather stations that contain data for all 25 h of case day 3 
overlaid on terrain data created from a USGS digital elevation model with a resolution of  
1/3 arc-second 
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Fig. 2d The location of the weather stations that contain data for all 25 h of case day 4 
overlaid on terrain data created from a USGS digital elevation model with a resolution of  
1/3 arc-second 
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Fig. 2e The location of the weather stations that contain data for all 25 h of case day 5 
overlaid on terrain data created from a USGS digital elevation model with a resolution of  
1/3 arc-second 

4. Data Analysis  

Our first step was to examine the MET model performance statistics generated 
when MET created the matched-pair output data for the inner domain (domain 3). 
In Table 3, we summarize these statistics for 2 h in each of the 5 cases; 4:00 PM 
Pacific Standard Time (PST) (0000 UTC) to capture the late afternoon, unstable 
Planetary Boundary Layer (PBL) conditions, and 4:00 AM PST (1200 UTC) on 
the second day of the case to consider the early morning, stable PBL conditions. It 
is important to note that 4:00 AM is also the last forecast produced for that case 
day. Appendix A expands Table 3 to include other hours for each of the 5 case 
days. The average temperature bias error in Table 3 ranged from −3.55 to 2.42 K, 
and the average relative humidity bias error ranged from −18.66 to 17.34 K, 
suggesting that the model performed reasonably well over domain 3. However, 
because MET calculates statistics over the entire domain, large positive and 
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negative bias errors could be cancelling each other out and masking poor model 
performance. 

Table 3 Mean bias (modeled–observed) errors for each of the 5 case days, and the 3 
meteorological variables modeled at the Z2 surface level (2 meters AGL): 4:00 PM PST 
(0000 UTC) and 4:00 AM PST (1200 UTC) the next day. These statistics were calculated 
over the entire domain. 

Case UTC Temperature 
(K) Dew Point (K) Relative 

Humidity (%) 

1 
0000 −0.17 1.11 5.83 

1200 0.76 1.40 2.39 

2 
0000 −2.89 2.95 12.27 

1200 2.42 −1.35 −13.76 

3 
0000 −0.65 0.09 1.94 

1200 0.81 −2.18 −11.31 

4 
0000 0.30 0.23 0.14 

1200 1.58 −2.18 −18.66 

5 0000 −3.55 3.48 17.34 

 1200 −0.13 −0.59 −1.57 

 

Using ArcGIS version 10.2.2 (ESRI 2014), we created quantile-quantile (Q-Q) 
plots of the model errors (modeled value minus measured value) of each hour. A 
Q-Q plot provides a visual comparator of observed or experimental data to a 
reference probability distribution (Jolliffe and Stephenson 2011; Wilks 2011). We 
found that all of the model errors were approximately normally distributed; 
consequently, we used conventional statistical techniques that are predicated on 
the assumption of normality in our analysis of the model errors. 

The goal of this study was to develop GIS tools for determining whether the 
terrain influences the model error. Previous studies have found that terrain 
variables such as elevation and slope have a strong influence on climatological 
temperature values (Agnew and Palutikof 2000; Brown and Comrie 2002; 
Chapman and Thornes 2003). Other candidate explanatory variables include land 
use (Cheng et al. 2012) and soil moisture (Massey et al. 2014). We chose 
elevation as the explanatory terrain variable for this study because of its known 
affect on temperature and conducted a correlation analysis of model error as the 
dependent variable against observation station elevation as the independent 
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variable. Future studies will include the analysis of other explanatory variables 
such as slope, aspect, distance from the coast, and land use.  

4.1 Correlation Statistics for the Temperature and Relative 
Humidity Bias Errors and for Terrain Elevation 

We performed a correlation analysis with model error as the dependent variable 
and observation elevation as the independent variable. In Figs. 3a–e, where a–e 
correspond to case days 1–5, we plot the Pearson correlation coefficients between 
the relative humidity and temperature model errors as dependent variables to 
elevation as the independent variable, by forecast hour for each case study day. 
We tested the statistical significance of each correlation coefficient using the 
Student t-test (Jolliffe and Stephenson 2011). Correlation coefficients of 0.2 and 
greater were always statistically significant with the number of measurements that 
were available. On case study days with a larger number of observations, some 
correlation coefficients below 0.2 were also statistically significant.  

 

Fig. 3a The Pearson correlation coefficient computed between elevation and the model 
errors for relative humidity (triangles) and surface temperature (circles) for each hour of 
case day 1 
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Fig. 3b The Pearson correlation coefficient computed between elevation and the model 
errors for relative humidity (triangles) and surface temperature (circles) for each hour of 
case day 2 
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Fig. 3c The Pearson correlation coefficient computed between elevation and the model 
errors for relative humidity (triangles) and surface temperature (circles) for each hour of 
case day 3 
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Fig. 3d The Pearson correlation coefficient computed between elevation and the model 
errors for relative humidity (triangles) and surface temperature (circles) for each hour of 
case day 4 
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Fig. 3e The Pearson correlation coefficient computed between elevation and the model 
errors for relative humidity (triangles) and surface temperature (circles) for each hour of 
case day 5 

We conducted further analysis of the data in Fig. 3 to discern diurnal trends in the 
correlation coefficient between temperature and relative humidity. In general, 
there appear to be no strong trends. However, we noted that the magnitude of the 
correlation of temperature with elevation to be highest in the afternoon from 
12:00 PM PST to 4:00 PM PST except on February 7, the day with the most 
widespread precipitation. For relative humidity this was not the case. The hour of 
highest correlation with temperature occurred at varying times depending on the 
case study day.  

Comparing the temporal changes in the correlation coefficients for both variables, 
we noticed that there appeared to be an inverse relationship between those of 
relative humidity and temperature. For each of the 5 case study days, we found 
that the correlation plots of temperature and relative humidity are nearly perfect 
mirror images of each other, another indication of the strong negative correlation 
between temperature and relative humidity forecast errors. Wherever one variable 
is positively correlated with elevation, the other variable is negatively correlated 
with elevation.  
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This obvious pattern raised our interest in determining why this is the case. We 
posed the hypothesis that the relative humidity and temperature forecast errors 
were correlated with each other and then calculated Pearson correlation 
coefficients between temperature error and relative humidity error to test this 
hypothesis. Figure 4 shows the plots of the coefficients by forecast hour for each 
case study day. 

With the exception of a few hours, we found that the relative humidity and 
temperature error have a strong negative correlation and thus are not independent. 
This means that the same explanatory variables may potentially explain the 
variance in the forecast error of both parameters. There does not appear to be a 
diurnal pattern to the variation in the correlation coefficient between temperature 
and relative humidity, which suggests that synoptic conditions could partially 
account for some of the variation in Fig. 4. The most likely explanation for the 
strong inverse correlation between temperature and relative humidity model error 
lies in the underlying relationship between relative humidity and temperature. 
Because relative humidity is a function of the temperature and water vapor mixing 
ratio and an increasing temperature usually means decreasing relative humidity, a 
negative correlation between temperature and relative humidity error is to be 
expected even if the terrain is flat.  

 

Fig. 4 The Pearson correlation coefficient between the model error of surface 
temperature and the model error of surface relative humidity 
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To quantify the contribution of terrain elevation to the overall variability of the 
model error, we calculated the Pearson correlation coefficients for temperature 
and relative humidity model error with terrain elevation. The percent of variance 
in the model error attributable to elevation as an explanatory variable was plotted 
by output hour for each case study day. Elevation accounts for a sometimes 
substantial portion of the variance in both the temperature and relative humidity 
model error for some cases and times, as shown in Figs. 5a–e, where a–e refer to 
case days 1–5. On average, elevation accounts for about 10% to 20% of the total 
variance in the model bias. It is difficult to discern a diurnal pattern, but elevation 
generally accounts for the greatest percentage of the model bias during the 
afternoon hours from 12:00 PM to 5:00 PM PST. For example, at noon on 
February 7, 2012 (case day 1), elevation accounts for 56% of the temperature 
model bias and 72% of the relative humidity model bias (elevation’s strongest 
influence among the 5 case days investigated). 

 

Fig. 5a The percentage of model temperature error (circles) and in the relative humidity 
error (triangles) variance that is attributable to elevation as an explanatory variable for case 
day 1 
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Fig. 5b The percentage of model temperature error (circles) and in the relative humidity 
error (triangles) variance that is attributable to elevation as an explanatory variable for case 
day 2 
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Fig. 5c The percentage of model temperature error (circles) and in the relative humidity 
error (triangles) variance that is attributable to elevation as an explanatory variable for case 
day 3 
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Fig. 5d The percentage of model temperature error (circles) and in the relative humidity 
error (triangles) variance that is attributable to elevation as an explanatory variable for case 
day 4 
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Fig. 5e The percentage of model temperature error (circles) and in the relative humidity 
error (triangles) variance that is attributable to elevation as an explanatory variable for case 
day 5 

For each case day, we determined the number of model output hours out of the 25 
available (6 analysis and 19 forecast hours), which had elevation as a significant 
explanatory variable. Because the number of observation stations considered for a 
given case day was fixed for that case (see Table 2), we could determine a 
threshold (at an α of 5%) for the correlation coefficient above which the 
correlation would be considered significant. Finally, we judged that if a large 
number (more than half) of the model output hours had significant correlations, 
then elevation was a significant explanatory variable for that variable and case. 
This data is presented in Table 4 for both Temperature and Relative Humidity. 
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Table 4 Statistics related to the percentage of variance of the temperature and relative 
humidity forecast errors explained by elevation 

Note: For both threshold and maximum R2, the values are the Pearson R2 coefficient 
multiplied by 100 to show the values as percentiles. 

 Temperature 

Case 
Day 

Threshold R2 

(%) 

No. 
Significant 

Output 
Hours  

Maximum R2 

(%) Elevation Significant? 
1 4.19  22 55.71 Yes 
2 3.99  14 23.29 Yes 
3 2.79  21 40.18 Yes 
4 4.01  18 41.98 Yes 
5 5.43  5 20.18 No 

 
 

    Relative Humidity 

Case 
Day 

Threshold R2 

(%) 

No. 
Significant 

Output 
Hours  

Maximum R2 

(%) Elevation Significant? 
1 2.95  21 72.30 Yes 
2 4.26  9 18.32 No 
3 2.84  19 38.68 Yes 
4 4.37  19 56.14 Yes 
5 5.71  10 23.29 No 

4.2 Estimating the Forecast Error over the Entire Domain using 
GIS 

Using a GIS, we created a raster mosaic of terrain data from USGS digital 
elevation model (DEM) data (USGS 2013). The USGS DEM has a resolution of 
1/3 arc-second and a datum of NAD1983. A datum is a mathematical algorithm to 
account for the fact that the earth is not perfectly spherical. A projection corrects 
for the distortion that occurs when projecting spherical latitude and longitude 
coordinates onto the flat surface of paper or a computer screen. WRF uses no 
datum (assumes that the earth is a perfect sphere), and we used the Lambert Conic 
Conformal projection in our WRF modeling.  

Matching the Point-Stat matched pair data with the DEM proved to be a big 
challenge, because the projection and datum of the MADIS data were not 
specified. Upon the advice of Olga Wilhelmi and Jennifer Boehnert from NCAR 
(2014), we used the NAD1983 datum without a projection for the Point-Stat data. 
With these GIS settings, the Point-Stat data matched the USGS DEM very well. 
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For example, weather stations located on the tiny Channel Islands off the 
California coast were correctly geo-located on land rather than the Pacific Ocean.  

To estimate the model errors over the entire domain, we treated each weather 
station measurement as a sample point from a random field and employed the 
Empirical Bayesian Kriging (EBK) tool (Krivoruchko 2011; 2012) of ArcGIS to 
estimate a continuous error surface. These surfaces do not extend to the western 
or southern extents of the domain because there is insufficient data in these areas 
to produce a statistically significant surface estimate. Contours of the bias error, 
corresponding to the quintiles of the error distribution, were created to ensure that 
the underlying terrain was visible. 

In our analysis of the 5 case study days, we studied the 5 specific hours given in 
Table 5. We chose these specific times to examine the impact of the data 
assimilation and the stability of the boundary layer. Under clear skies and weak 
synoptic forcing, at 5:00 AM PST (the second assimilation hour) we would expect 
the boundary layer to be stable because the sun has not yet warmed the surface of 
the earth. Similarly the boundary layer is often unstable at about 0000 UTC due to 
a continual upward heat flux following the earlier maximum solar insolation 
period. As the ground cools after sunset, the boundary layer becomes more stable. 
Clear sky conditions were less common during the 5 case study days of this study. 
Precipitation occurred over the study domain on case days 1, 3, and 4; and much 
of the domain was cloudy on case day 5. Under cloudy conditions with 
precipitation, we expect that the actual tendency would have been for more 
neutral/less stable conditions during nighttime and less unstable during the day.  

Table 5 Hours chosen for further GIS study and the rationale for these choices 

 Time (h)  

Period UTC Forecast 
Lead 

Local 
(PST) Reason 

Analysis 
13 –5 5:00 AM First hour of data assimilation 

completed 

18 0 10:00 AM Beginning of forecast; near neutral 
boundary layer 

Forecast 

0 6 4:00 PM Late afternoon, unstable boundary layer 

6 12 10:00 PM Early evening, slightly stable boundary 
layer 

12 18 4:00 AM Early morning, stable boundary layer 
 
The effect of the terrain on the model error can be clearly seen in the March 1, 
2012 (case day 4) error contour maps of Fig. 6. For most of the day, the 
temperature model bias is positively correlated with elevation, while relative 
humidity model bias is negatively correlated with elevation. However, an 
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exception is 5:00 AM PST (13 UTC; Figure 6a, top row), when these correlations 
are reversed; however, the correlation coefficients for this hour are not 
statistically significant. The strong inverse relationship between temperature and 
relative humidity is clearly evident in the afternoon hours of March 1 (Fig. 6b, top 
row). The terrain effects can also be seen in the forecast error contour maps for  
February 9, February 26, and March 5, 2012, which can be found in Appendix B. 
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Fig. 6a EBK-created isolines of constant model error (forecast minus observed) for March 
1, 2012 (case day 4), for 5:00 AM PST (13 UTC) and 10:00 AM PST (18 UTC) 

Note: The temperature model error is shown in the left column and the relative humidity 
model error in the right column. Each map shows USGS terrain height (shaded) overlaid 
with colored isolines showing the quintiles of the error distribution. The scatterplot with 
each map shows the relationship between terrain height and model error along with a best 
fit line. The top row is 5:00 AM PST (13 UTC, 1 h into preforecast) and the bottom row is 
10:00 AM PST (18 UTC, 0-h forecast).  
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Fig. 6b EBK-created isolines of constant model error (forecast minus observed) for March 
1, 2012 (case day 4), for 4:00 PM PST (0 UTC) and 10:00 PM PST (6 UTC) 

Note: The temperature model error is shown in the left column and the relative humidity 
model error in the right column. Each map shows USGS terrain height (shaded) overlaid 
with colored isolines showing the quintiles of the error distribution. The scatterplot with 
each map shows the relationship between terrain height and model error along with a best 
fit line. The top row is 4:00 PM PST (0 UTC, 6-h forecast) and the bottom row is 10:00 PM 
PST (6 UTC, 12-h forecast).  
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Fig. 6c EBK-created isolines of constant model error (forecast minus observed) for March 
1, 2012 (case day 4), for 4:00 AM PST (12 UTC) on March 2, 2012 

Note: The temperature model error is shown in the left column and the relative humidity 
model error in the right column. Each map shows USGS terrain height (shaded) overlaid 
with colored isolines showing the quintiles of the error distribution. The scatterplot with 
each map shows the relationship between terrain height and model error along with a best 
fit line. This row is for 4:00 AM PST the next day (12 UTC, 18-h forecast).  
 
We also created error contours for each hour of February 7, 2012. Selected hours 
are shown in Figs. 7a–g, and error contours for every hour can be found in 
Appendix C. From 10:00 AM PST to 1:00 PM PST (Figs. 7a and 7b, respectively) 
temperature model error is negatively correlated with elevation, while the relative 
humidity model error is positively correlated. These correlations are evident in 
both the error contours and the scatter plots of forecast error versus elevation. 
Between 5:00 PM and 6:00 PM PST (Fig. 7c), these correlations are reversed so 
that temperature forecast error is positively correlated with elevation,  while the 
relative humidity forecast error is negatively correlated. This trend continues from 
7:00 PM PST to 10:00 PM PST (Figs. 7d and 7e, respectively). Between 11:00 
PM and 12:00 AM PST (Fig. 7f), the correlations are again reversed.  
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Fig. 7a EBK-created isolines of constant model error (forecast minus observed) for 
February 7, 2012 (case day 1) for 10:00 AM PST (18 UTC) and 11:00 AM PST (19 UTC)  

Note: The temperature model error is shown in the left column and the relative humidity 
model error in the right column. Each map shows USGS terrain height (shaded) overlaid 
with colored isolines showing the quintiles of the error distribution. The scatterplot with 
each map shows the relationship between terrain height and model error along with a best 
fit line. The top row is 10:00 AM PST (18 UTC, 0-h forecast) and the bottom row is 11:00 
AM PST (19 UTC, 1-h forecast).  
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Fig. 7b EBK-created isolines of constant model error (forecast minus observed) for 
February 7, 2012 (case day 1) for 12:00 AM PST (20 UTC) and 1:00 AM PST (21 UTC) 

Note: The temperature model error is shown in the left column and the relative humidity 
model error in the right column. Each map shows USGS terrain height (shaded) overlaid 
with colored isolines showing the quintiles of the error distribution. The scatterplot with 
each map shows the relationship between terrain height and model error along with a best 
fit line. The top row is 12:00 PM PST (20 UTC, 2-h forecast) and the bottom row is 1:00 PM 
PST (21 UTC, 3-h forecast). 
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Fig. 7c EBK-created isolines of constant model error (forecast minus observed) for 
February 7, 2012 (case day 1) for 5:00 PM PST (1 UTC) and 6:00 PM PST (2 UTC) 

Note: The temperature model error is shown in the left column and the relative humidity 
model error in the right column. Each map shows USGS terrain height (shaded) overlaid 
with colored isolines showing the quintiles of the error distribution. The scatterplot with 
each map shows the relationship between terrain height and model error along with a best 
fit line. The top row is 5:00 PM PST (1 UTC, 7-h forecast) and the bottom row is 6:00 PM 
PST (2 UTC, 8-h forecast). 
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Fig. 7d EBK-created isolines of constant model error (forecast minus observed) for 
February 7, 2012 (case day 1) for 7:00 PM PST (3 UTC) and 8:00 PM PST (4 UTC) 

Note: The temperature model error is shown in the left column and the relative humidity 
model error in the right column. Each map shows USGS terrain height (shaded) overlaid 
with colored isolines showing the quintiles of the error distribution. The scatterplot with 
each map shows the relationship between terrain height and model error along with a best 
fit line. The top row is 7:00 PM PST (3 UTC, 9-h forecast) and the bottom row is 8:00 PM 
PST (4 UTC, 10-h forecast).  
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Fig. 7e EBK-created isolines of constant model error (forecast minus observed) for 
February 7, 2012 (case day 1) for 9:00 PM PST (5 UTC) and 10:00 PM PST (6 UTC) 

Note: The temperature model error is shown in the left column and the relative humidity 
model error in the right column. Each map shows USGS terrain height (shaded) overlaid 
with colored isolines showing the quintiles of the error distribution. The scatterplot with 
each map shows the relationship between terrain height and model error along with a best 
fit line. The top row is 9:00 PM PST (5 UTC, 11-h forecast) and the bottom row is 10:00 PM 
PST (6 UTC, 12-h forecast).  
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Fig. 7f EBK-created isolines of constant model error (forecast minus observed) for 
February 7, 2012 (case day 1) for 11:00 PM PST (7 UTC) and 12:00 AM PST (8 UTC) 

Note: The temperature model error is shown in the left column and the relative humidity 
model error in the right column. Each map shows USGS terrain height (shaded) overlaid 
with colored isolines showing the quintiles of the error distribution. The scatterplot with 
each map shows the relationship between terrain height and model error along with a best 
fit line. The top row is 11:00 PM PST (7 UTC, 13-h forecast) and the bottom row is 12:00 
AM PST (8 UTC, 14-h forecast). 
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Fig. 7g EBK-created isolines of constant model error (forecast minus observed) for 
February 7, 2012 (case day 1) for 1:00 AM PST (9 UTC) and 2:00 AM PST (10 UTC) 

Note: The temperature model error is shown in the left column and the relative humidity 
model error in the right column. Each map shows USGS terrain height (shaded) overlaid 
with colored isolines showing the quintiles of the error distribution. The scatterplot with 
each map shows the relationship between terrain height and model error along with a best 
fit line. The top row is 1:00 AM PST (9 UTC, 15-h forecast) and the bottom row is 2:00 AM 
PST (10 UTC, 16-h forecast).  



 

38 
 

5. Summary and Conclusions 

We have found that elevation accounts for a portion of the variance in the 
temperature and relative humidity WRF model errors. On average, elevation 
accounts for about 10% to 20% of the total variance, with elevation explaining 
more than 50% of the total variance during the afternoon hours of February 7, 
2012. By contrast, elevation accounts for none of the variance during the early 
morning hours of March 1 and March 5. Overall, elevation accounts for more 
variance during the afternoon hours and less variance during the early morning 
hours; but we cannot distinguish a clear diurnal pattern as to how much elevation 
affects the WRF model error. 

Future studies will evaluate the effect of other explanatory terrain variables such 
as slope, aspect, and distance from the coastline, latitude, longitude, soil moisture, 
and land use on bias errors. Further research is needed to evaluate why terrain 
variables such as elevation affect the WRF model error. It would also be 
beneficial to evaluate how synoptic weather conditions influence the relationship 
between model error and terrain variables. Analysis of weather conditions would 
likely help us to better understand the day-to-day (and hour-to-hour) variation in 
the model bias errors. 

Another possible source of model error may be geolocation errors. The WRF 
model assumes that the earth is a perfect sphere and does not use a datum to 
correct for the fact that the earth is not perfectly spherical. Geolocation 
discrepancies cause errors in the Coriolis forcing and lateral boundary conditions 
as well as in the locations of various observations, which can have discrepancies 
of as much as 20 km depending on latitude; a condition of concern for local area 
models with horizontal resolutions on the order of 1 km (Monaghan et al. 2013; 
see especially Fig. 1, p. 2121). 

We achieved our goal for this study, which was to develop analytical methods that 
go beyond the types of conclusions gained from domain-level, aggregate 
statistics. Using the tools of the GIS, the model errors can be analyzed to show 
their possible dependence on terrain characteristics at the spatial scales of 
phenomena of interest to Army Warfighters—such as mountain/valley breezes 
and land/sea breezes. This study demonstrates that GIS tools show considerable 
promise toward our goal of demonstrating the relationships and dependencies of 
high-resolution model errors to terrain characteristics in subdomains where the 
statistics are more homogeneous.  
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Appendix A. Domain Level Errors for All 5 Case Days 
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Table A-1 Mean bias (modeled−observed) errors for each of the 5 case days, and the 3 
meteorological variables modeled at the Z2 surface level (2 meters AGL). These statistics 
were calculated over the entire domain.  

February 7–8, 2012 
Hour (PST) Hour (UTC) Temperature (K) Dew Point Temp. (K) Relative Humidity (%) 
04:00 AM  12 0.09 1.06 0.96 
05:00 AM  13 −0.08 −0.16 −1.37 
10:00 AM  18 0.69 −0.94 −5.70 
04:00 PM  0 −0.17 1.11 5.83 
10:00 PM  6 0.35 −2.22 −12.17 
04:00 AM  12 0.76 1.40 2.39 

February 9–10, 2012 
Hour (PST) Hour (UTC) Temperature (K) Dew Point Temp. (K) Relative Humidity (%) 
04:00 AM  12 0.17 0.17 −0.38 
05:00 AM  13 −0.57 0.82 3.49 
10:00 AM  18 −0.06 0.96 2.56 
04:00 PM  0 −2.89 2.95 12.27 
10:00 PM  6 1.33 −0.18 −5.28 
04:00 AM  12 2.42 −1.35 −13.76 

February 16–17, 2012 
Hour (PST) Hour (UTC) Temperature (K) Dew Point Temp. (K) Relative Humidity (%) 
04:00 AM  12 0.14 0.06 −0.46 
05:00 AM  13 0.59 0.14 −2.64 
10:00 AM  18 0.85 −0.40 −5.35 
04:00 PM  0 −0.65 0.09 1.94 
10:00 PM  6 0.10 −1.29 −5.63 
04:00 AM  12 0.81 −2.18 −11.31 

March 1–2, 2012 
Hour (PST) Hour (UTC) Temperature (K) Dew Point Temp. (K) Relative Humidity (%) 
04:00 AM  12 0.15 −0.03 −0.40 
05:00 AM  13 −0.02 0.19 1.84 
10:00 AM  18 0.41 0.25 0.07 
04:00 PM  0 0.30 0.23 0.14 
10:00 PM  6 −0.54 −0.87 −1.24 
04:00 AM  12 1.58 −2.18 −18.66 

March 5–6, 2012 
Hour (PST) Hour (UTC) Temperature (K) Dew Point Temp. (K) Relative Humidity (%) 
04:00 AM  12 0.81 −0.33 −2.51 
05:00 AM  13 −0.63 −0.82 −1.09 
10:00 AM  18 −0.03 0.33 1.31 
04:00 PM  0 −3.55 3.48 17.34 
10:00 PM  6 0.99 −2.23 −10.77 
04:00 AM  12 −0.13 −0.59 −1.57 
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Appendix B. Remaining Case Days beyond Fig. 6 
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Note: Each map in this appendix shows US Geological Survey (USGS) terrain height 
(shaded) overlaid with colored isolines showing the quintiles of the bias distribution. The left 
panel shows a scatterplot of the relationship between terrain height and model bias along 
with a best fit line. 
 

 

Fig. B-1a    Weather Research and Forecasting (WRF) 1-km domain model surface bias 
(forecast minus observed) for the February 9, 2012, case for temperature (left column) and 
relative humidity (right column). The top row is 5:00 AM Pacific Standard Time (PST) (13 
coordinated universal time [UTC], 1 h into preforecast) and the bottom row is 10:00 AM 
PST (18 UTC, 0-h forecast).  
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Fig. B-1b  WRF 1-km domain model surface bias (forecast minus observed) for the February 
9, 2012, case for temperature (left column) and relative humidity (right column). The top 
row is 4:00 PM PST (00 UTC, 6-h forecast) and the bottom row is 10:00 PM PST (06 UTC, 
12-h forecast) 
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Fig. B-1c  WRF 1-km domain model surface bias (forecast minus observed) for the February 
9, 2012, case for temperature (left figure) and relative humidity (right figure), 4:00 AM the 
next day (12 UTC, 18-h forecast) 
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Fig. B-2a  WRF 1-km domain model surface bias (forecast minus observed) for the February 
16, 2012, case for temperature (left column) and relative humidity (right column). The top 
row is 5:00 AM PST (13 UTC, 1 h into preforecast) and the bottom row is 10:00 AM PST (18 
UTC, 0–h forecast).  
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Fig. B-2b   WRF 1-km domain model surface bias (forecast minus observed) for the 
February 16, 2012, case for temperature (left column) and relative humidity (right column). 
The top row is 4:00 PM PST (00 UTC, 6-h forecast) and the bottom row is 10:00 PM PST (06 
UTC, 12-h forecast).  
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Fig. B-2c  WRF 1-km domain model surface bias (forecast minus observed) for the February 
16, 2012, case for temperature (left figure) and relative humidity (right figure), 4:00 AM the 
next day (12 UTC, 18-h forecast) 
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Fig. B-3a  WRF 1-km domain model surface bias (forecast minus observed) for the March 5, 
2012, case for temperature (left column) and relative humidity (right column). The top row 
is 5:00 AM PST (13 UTC, 1 h into preforecast) and the bottom row is 10:00 AM PST (18 
UTC, 0–h forecast).  
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Fig. B-3b  WRF 1-km domain model surface bias (forecast minus observed) for the March 5, 
2012, case for temperature (left column) and relative humidity (right column). The top row 
is 4:00 PM PST (00 UTC, 6-h forecast) and the bottom row is 10:00 PM PST (06 UTC, 12-h 
forecast).  
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Fig. B-3c  WRF 1-km domain model surface bias (forecast minus observed) for the March 5, 
2012, case for temperature (left figure) and relative humidity (right figure), 4:00 AM the 
next day (12 UTC, 18-h forecast) 
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Appendix C. Case Day 1, All Hours 
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Fig. C-1 February 7, 2012, Weather Research and Forecasting (WRF) error (forecast minus 
observed). Elevation versus temperature forecast error (left column) and elevation versus 
relative humidity forecast error (right column). The top row is 4:00 AM Pacific Standard 
Time (PST) (12 UTC) and the bottom row is 5:00 AM PST (13 UTC). 
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Fig. C-2 February 7, 2012, WRF error (forecast minus observed). Elevation versus 
temperature forecast error (left column) and elevation versus relative humidity forecast 
error (right column). The top row is 6:00 AM PST (14 UTC), and the bottom row is 7:00 AM 
PST (15 UTC). 
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Fig. C-3 February 7, 2012, WRF error (forecast minus observed). Elevation versus 
temperature forecast error (left column) and elevation versus relative humidity forecast 
error (right column). The top row is 8:00 AM PST (16 UTC), and the bottom row is 9:00 AM 
PST (17 UTC). 
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Fig. C-4 February 7, 2012, WRF error (forecast minus observed). Elevation versus 
temperature forecast error (left column) and elevation versus relative humidity forecast 
error (right column). The top row is 10:00 AM PST (18 UTC), and the bottom row is 11:00 
AM PST (19 UTC). 
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Fig. C-5 February 7, 2012, WRF error (forecast minus observed). Elevation versus 
temperature forecast error (left column) and elevation versus relative humidity forecast 
error (right column). The top row is 12:00 PM PST (20 UTC), and the bottom row is 1:00 
PM PST (21 UTC). 
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Fig. C-6 February 7, 2012, WRF error (forecast minus observed). Elevation versus 
temperature forecast error (left column) and elevation versus relative humidity forecast 
error (right column). The top row is 2:00 PM PST (22 UTC), and the bottom row is 3:00 PM 
PST (23 UTC). 
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Fig. C-7 February 7, 2012, WRF error (forecast minus observed). Elevation versus 
temperature forecast error (left column) and elevation versus relative humidity forecast 
error (right column). The top row is 4:00 PM PST (0 UTC), and the bottom row is 5:00 PM 
PST (1 UTC). 
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Fig. C-8 February 7, 2012, WRF error (forecast minus observed). Elevation versus 
temperature forecast error (left column) and elevation versus relative humidity forecast 
error (right column). The top row is 6:00 PM PST (2 UTC), and the bottom row is 7:00 PM 
PST (3 UTC). 
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Fig. C-9 February 7, 2012, WRF error (forecast minus observed). Elevation versus 
temperature forecast error (left column) and elevation versus relative humidity forecast 
error (right column). The top row is 8:00 PM PST (4 UTC), and the bottom row is 9:00 PM 
PST (5 UTC). 
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Fig. C-10   February 7, 2012, WRF error (forecast minus observed). Elevation versus 
temperature forecast error (left column) and elevation versus relative humidity forecast 
error (right column). The top row is 10:00 PM PST (6 UTC), and the bottom row is 11:00 
PM PST (7 UTC). 
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Fig. C-11   February 7, 2012, WRF error (forecast minus observed). Elevation versus 
temperature forecast error (left column) and elevation versus relative humidity forecast 
error (right column). The top row is 12:00 AM PST (8 UTC), and the bottom row is 1:00 AM 
PST (9 UTC). 



 

69 
 

 

Fig. C-12 February 7, 2012, WRF error (forecast minus observed). Elevation versus 
temperature forecast error (left column) and elevation versus relative humidity forecast 
error (right column). The top row is 2:00 AM PST (10 UTC), and the bottom row is 3:00 AM 
PST (11 UTC). 
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Fig. C-13   February 7, 2012, WRF error (forecast minus observed). 4:00 AM (12 UTC) the 
next day, elevation versus temperature forecast error (left) and elevation versus relative 
humidity forecast error (right). 
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List of Symbols, Abbreviations, and Acronyms  

3-D 3-Dimensional 

ACARS Aircraft Communications Addressing and Reporting System 

AGL above ground level 

ARL US Army Research Laboratory 

DEM digital elevation model 

EBK Empirical Bayesian Kriging   

FDDA Four Dimensional Data Assimilation 

GFS Global Forecast System 

GIS Geographic Information System 

h hour(s) 

hPa hectopascal 

K Degrees Kelvin 

km kilometer 

LTC Lieutenant Colonel 

MADIS Meteorological Assimilation Data Ingest System 

MET Model Evaluation Tools 

MODE Method for Object-based Diagnostic Evaluation 

MYJ Mellor–Yamada–Janjić 

MyWIDA My Weather Impacts Decision Aid 

NCAR National Center for Atmospheric Research 

NOAA National Oceanic and Atmospheric Administration 

NWP Numerical Weather Prediction 

PBL Planetary Boundary Layer 

PST Pacific Standard Time 

Q-Q quantile-quantile 
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RRTM Rapid Radiative Transfer Model 

TAMDAR Tropospheric Airborne Meteorological Data Reporting 

USGS US Geological Survey 

UTC coordinated universal time 

WRE–N Weather Running Estimate–Nowcast 

WRF Weather Research and Forecasting 

WRF–ARW Weather Research and Forecasting–Advanced Research WRF 

WSMR White Sands Missile Range 
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